In this paper, we use the CUR matrix factorization as a means of dimension reduction to identify important subsequences in electrocardiogram (ECG) time series. As opposed to other factorizations typically used in dimension reduction that characterize data in terms of abstract representatives (for example, an orthogonal basis), the CUR factorization describes the data in terms of actual instances within the original data set. Therefore, the CUR characterization can be directly related back to the clinical setting. We apply CUR to a synthetic ECG data set as well as to data from the MIT-BIH Arrhythmia, MGH-MF, and Incart databases using the discrete empirical interpolation method (DEIM) and an incremental QR factorization. In doing so, we demonstrate that CUR is able to identify beat morphologies that are representative of the data set, including rare-occurring beat events, providing a robust summarization of the ECG data. We also see that using CUR-selected beats to label the remaining unselected beats via 1-nearest neighbor classification produces results comparable to those presented in other works. While the electrocardiogram is of particular interest here, this work demonstrates the utility of CUR in detecting representative subsequences in quasiperiodic physiological time series.
Finding representative electrocardiogram beat morphologies with CUR.
阅读:4
作者:Hendryx Emily P, Rivière Béatrice M, Sorensen Danny C, Rusin Craig G
| 期刊: | Journal of Biomedical Informatics | 影响因子: | 4.500 |
| 时间: | 2018 | 起止号: | 2018 Jan;77:97-110 |
| doi: | 10.1016/j.jbi.2017.12.003 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
