Learning PDE to Model Self-Organization of Matter.

阅读:3
作者:Brandao Eduardo, Colombier Jean-Philippe, Duffner Stefan, Emonet Rémi, Garrelie Florence, Habrard Amaury, Jacquenet François, Nakhoul Anthony, Sebban Marc
A self-organization hydrodynamic process has recently been proposed to partially explain the formation of femtosecond laser-induced nanopatterns on Nickel, which have important applications in optics, microbiology, medicine, etc. Exploring laser pattern space is difficult, however, which simultaneously (i) motivates using machine learning (ML) to search for novel patterns and (ii) hinders it, because of the few data available from costly and time-consuming experiments. In this paper, we use ML to predict novel patterns by integrating partial physical knowledge in the form of the Swift-Hohenberg (SH) partial differential equation (PDE). To do so, we propose a framework to learn with few data, in the absence of initial conditions, by benefiting from background knowledge in the form of a PDE solver. We show that in the case of a self-organization process, a feature mapping exists in which initial conditions can safely be ignored and patterns can be described in terms of PDE parameters alone, which drastically simplifies the problem. In order to apply this framework, we develop a second-order pseudospectral solver of the SH equation which offers a good compromise between accuracy and speed. Our method allows us to predict new nanopatterns in good agreement with experimental data. Moreover, we show that pattern features are related, which imposes constraints on novel pattern design, and suggest an efficient procedure of acquiring experimental data iteratively to improve the generalization of the learned model. It also allows us to identify the limitations of the SH equation as a partial model and suggests an improvement to the physical model itself.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。