Implicating the glutathione-gated potassium efflux system as a cause of electrophile-induced activated sludge deflocculation.

阅读:4
作者:Bott Charles B, Love Nancy G
The glutathione-gated K(+) efflux (GGKE) system represents a protective microbial stress response that is activated by electrophilic or thiol-reactive stressors. It was hypothesized that efflux of cytoplasmic K(+) occurs in activated sludge communities in response to shock loads of industrially relevant electrophilic chemicals and results in significant deflocculation. Novosphingobium capsulatum, a bacterium consistent with others found in activated sludge treatment systems, responded to electrophilic thiol reactants with rapid efflux of up to 80% of its cytoplasmic K(+) pool. Furthermore, N. capsulatum and activated sludge cultures exhibited dynamic efflux-uptake-efflux responses very similar to those observed by others in Escherichia coli K-12 exposed to the electrophilic stressors N-ethylmaleimide and 1-chloro-2,4-dinitrobenzene and the reducing agent dithiothreitol. Fluorescent LIVE/DEAD stains were used to show that cell lysis was not the cause of electrophile-induced K(+) efflux. Nigericin was used to artificially stimulate K(+) efflux from N. capsulatum and activated sludge cultures as a comparison to electrophile-induced K(+) efflux and showed that cytoplasmic K(+) efflux by both means corresponded with activated sludge deflocculation. These results parallel those of previous studies with pure cultures in which GGKE was shown to cause cytoplasmic K(+) efflux and implicate the GGKE system as a probable causal mechanism for electrophile-induced, activated sludge deflocculation. Calculations support the notion that shock loads of electrophilic chemicals result in very high K(+) concentrations within the activated sludge floc structure, and these K(+) levels are comparable to that which caused deflocculation by external (nonphysiological) KCl addition.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。