Single-Chamber Microbial Fuel Cell with an Innovative Sensing Component for Real-Time Continual Monitoring of a Wide Range of Cr(VI) Concentrations in Wastewater.

阅读:18
作者:Wang Guey-Horng, Kuo Jong-Tar, Cheng Chiu-Yu, Chung Ying-Chien
Hexavalent chromium (Cr(VI)) is toxic, carcinogenic, and harmful to biological systems. Common detection methods, such as colorimetry, atomic absorption spectrometry, ion chromatography, and biological systems, can only be used in the laboratory and do not provide real-time feedback. To address these limitations, the current study cloned the ChrB gene, which exhibits high specificity in detecting Cr(VI), and the ChrA gene, which exhibits high Cr(VI) tolerance, into Escherichia coli. This recombinant strain, ChrA-ChrB-E. coli, was integrated into a single-chamber microbial fuel cell for accurate continual monitoring over a wide range of Cr(VI) concentrations. ChrA-ChrB-E. coli thrived in temperatures from 25 °C to 45 °C and pH levels between 5 and 8. Its ability to reduce Cr(VI) remained consistent across Cr(VI) forms, carbon sources, and oxyanions. Cyclic voltammetry was employed to verify the electrical activity of the biosensor. The biosensor exhibited a detection limit of 0.0075 mg/L. Under conditions simulating the regulatory emission limit for Cr(VI) of 0.5 mg/L in industrial wastewater, the biosensor achieved a response time of 20 s during continual operation. When tested with synthetic wastewater containing Cr(VI) concentrations from 0.02 to 150 mg/L, the system exhibited high adaptability and facilitated stable monitoring (relative standard deviation ≤ 2.7%). Additionally, the biosensor's accuracy (-1.73% to 2.5%) matched that of traditional batch methods, highlighting its suitability for real-time Cr(VI) monitoring in aquatic environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。