This study investigates the strain hardening and dislocation structure in the surface layers of C45 steel subjected to precision grinding at various depths. The aim was to assess how different grinding conditions influence the mechanical response and defect structure of ferrite. Nanoindentation was used to evaluate mechanical properties, while X-ray diffraction analysis provided data on the microstrain, crystallite size, and residual stress. The character and density of dislocations were further examined using modified Williamson-Hall and q-parameter analysis. The results revealed that the sample ground to a depth of 2 μm exhibited the highest density of statistically stored dislocations, as well as the lowest dislocation mobility. This condition also corresponded to the highest residual stresses and the greatest share of screw dislocations, indicating intense strain localization. In contrast, deeper grinding depths resulted in lower dislocation densities and reduced the strain energy. The observed trends highlight the formation of a dislocation-rich nanostructured layer in the shallowest ground region. These findings provide new insights into the mechanisms of surface hardening in ferritic steels and demonstrate how the depth of material removal during grinding governs the subsurface microstructure and strengthening effects.
Impact of Grinding Depth on Dislocation Structures and Surface Hardening in C45 Steel.
阅读:3
作者:StanisÅawska Alicja, MoszczyÅska Dorota, Mizera JarosÅaw, Cavaliere Pasquale, Szkodo Marek
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Aug 18; 18(16):3870 |
| doi: | 10.3390/ma18163870 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
