Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan's disease.

阅读:5
作者:Madhavarao Chikkathur N, Arun Peethambaran, Moffett John R, Szucs Sylvia, Surendran Sankar, Matalon Reuben, Garbern James, Hristova Diana, Johnson Anne, Jiang Wei, Namboodiri M A Aryan
Canavan's disease (CD) is a fatal, hereditary disorder of CNS development that has been linked to mutations in the gene for the enzyme aspartoacylase (ASPA) (EC 3.5.1.15). ASPA acts to hydrolyze N-acetylaspartate (NAA) into l-aspartate and acetate, but the connection between ASPA deficiency and the failure of proper CNS development is unclear. We hypothesize that one function of ASPA is to provide acetate for the increased lipid synthesis that occurs during postnatal CNS myelination. The gene encoding ASPA has been inactivated in the mouse model of CD, and here we show significant decreases in the synthesis of six classes of myelin-associated lipids, as well as reduced acetate levels, in the brains of these mice at the time of peak postnatal CNS myelination. Analysis of the lipid content of white matter from a human CD patient showed decreased cerebroside and sulfatide relative to normal white matter. These results demonstrate that myelin lipid synthesis is significantly compromised in CD and provide direct evidence that defective myelin synthesis, resulting from a deficiency of NAA-derived acetate, is involved in the pathogenesis of CD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。