Use of glass transitions in carbohydrate excipient design for lyophilized protein formulations.

阅读:5
作者:Roughton Brock C, Topp E M, Camarda Kyle V
This work describes an effort to apply methods from process systems engineering to a pharmaceutical product design problem, with a novel application of statistical approaches to comparing solutions. A computational molecular design framework was employed to design carbohydrate molecules with high glass transition temperatures and low water content in the maximally freeze-concentrated matrix, with the objective of stabilizing lyophilized protein formulations. Quantitative structure-property relationships were developed for glass transition temperature of the anhydrous solute, glass transition temperature of the maximally concentrated solute, melting point of ice and Gordon-Taylor constant for carbohydrates. An optimization problem was formulated to design an excipient with optimal property values. Use of a stochastic optimization algorithm, Tabu search, provided several carbohydrate excipient candidates with statistically similar property values, as indicated by prediction intervals calculated for each property.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。