Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding

凝聚相信号可以扩大激酶特异性并对大分子拥挤作出反应

阅读:5
作者:Dajun Sang, Tong Shu, Christian F Pantoja, Alain Ibáñez de Opakua, Markus Zweckstetter, Liam J Holt

Abstract

Phase separation can concentrate biomolecules and accelerate reactions. However, the mechanisms and principles connecting this mesoscale organization to signaling dynamics are difficult to dissect because of the pleiotropic effects associated with disrupting endogenous condensates. To address this limitation, we engineered new phosphorylation reactions within synthetic condensates. We generally found increased activity and broadened kinase specificity. Phosphorylation dynamics within condensates were rapid and could drive cell-cycle-dependent localization changes. High client concentration within condensates was important but not the main factor for efficient phosphorylation. Rather, the availability of many excess client-binding sites together with a flexible scaffold was crucial. Phosphorylation within condensates was also modulated by changes in macromolecular crowding. Finally, the phosphorylation of the Alzheimer's-disease-associated protein Tau by cyclin-dependent kinase 2 was accelerated within condensates. Thus, condensates enable new signaling connections and can create sensors that respond to the biophysical properties of the cytoplasm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。