Evaluation of Kinetic Models for the Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone over Nickel Catalyst Supported by Titania.

阅读:5
作者:Sepulveda Lanziano Carlos Alberto, Rodella Cristiane Barbieri, Guirardello Reginaldo
The search for alternative sources of, and substitutes for, chemicals derived from fossil-based feedstocks encourages studies of heterogeneous catalysts to increase the feasibility of sustainable production of biomass derivatives, such as γ-valerolactone, among others. In this context, first, the performance of a titania-supported nickel catalyst (a non-noble catalyst) was evaluated in the reaction of hydrogenation of levulinic acid to γ-valerolactone in water using molecular hydrogen. The methods used included the synthesis of titania via the solgel method and nickel deposition by deposition-precipitation via removal of the complexing agent. The nickel was activated in a flow of hydrogen; the temperature of reduction and the calcination step were investigated with experiments at reaction conditions to study the catalyst's stability. Then, after a statistical evaluation of several proposed kinetic models, the kinetics of the reaction was found to be best represented by a model obtained considering that the reaction over the surface was the determinant step, followed by the non-dissociative adsorption of hydrogen and the competitive adsorption among hydrogen, levulinic acid, and γ-valerolactone. With that model, the activation energy of the levulinic acid to 4-hydroxypentanoic acid step was (47.0 ± 1.2) kJ mol(-1), since the determinant step was the hydrogenation reaction of the levulinic acid to 4-hydroxypentanoic acid. It was also concluded that the catalyst prepared was stable, active, and selective to γ-valerolactone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。