Dysfunction of ouabain-induced cardiac contractility in mice with heart-specific ablation of Na,K-ATPase beta1-subunit.

阅读:4
作者:Barwe Sonali P, Jordan Maria C, Skay Anna, Inge Landon, Rajasekaran Sigrid A, Wolle Daniel, Johnson Christina L, Neco Patricia, Fang Kun, Rozengurt Nora, Goldhaber Joshua I, Roos Kenneth P, Rajasekaran Ayyappan K
Na,K-ATPase is composed of two essential alpha- and beta-subunits, both of which have multiple isoforms. Evidence indicates that the Na,K-ATPase enzymatic activity as well as its alpha(1), alpha(3) and beta(1) isoforms are reduced in the failing human heart. The catalytic alpha-subunit is the receptor for cardiac glycosides such as digitalis, used for the treatment of congestive heart failure. The role of the Na,K-ATPase beta(1)-subunit (Na,K-beta(1)) in cardiac function is not known. We used Cre/loxP technology to inactivate the Na,K-beta(1) gene exclusively in the ventricular cardiomyocytes. Animals with homozygous Na,K-beta(1) gene excision were born at the expected Mendelian ratio, grew into adulthood, and appeared to be healthy until 10 months of age. At 13-14 months, these mice had 13% higher heart/body weight ratios, and reduced contractility as revealed by echocardiography compared to their wild-type (WT) littermates. Pressure overload by transverse aortic constriction (TAC) in younger mice, resulted in compensated hypertrophy in WT mice, but decompensation in the Na,K-beta(1) KO mice. The young KO survivors of TAC exhibited decreased contractile function and mimicked the effects of the Na,K-beta(1) KO in older mice. Further, we show that intact hearts of Na,K-beta(1) KO anesthetized mice as well as isolated cardiomyocytes were insensitive to ouabain-induced positive inotropy. This insensitivity was associated with a reduction in NCX1, one of the proteins involved in regulating cardiac contractility. In conclusion, our results demonstrate that Na,K-beta(1) plays an essential role in regulating cardiac contractility and that its loss is associated with significant pathophysiology of the heart.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。