Human stem cell-derived thymic epithelial cells enhance human T-cell development in a xenogeneic thymus.

阅读:3
作者:Gras-Peña Rafael, Danzl Nichole M, Khosravi-Maharlooei Mohsen, Campbell Sean R, Ruiz Amanda E, Parks Christopher A, Suen Savage William Meng, Holzl Markus A, Chatterjee Debanjana, Sykes Megan
BACKGROUND: Generation of thymic tissue from pluripotent stem cells would provide therapies for acquired and congenital thymic insufficiency states. OBJECTIVES: This study aimed to generate human thymic epithelial progenitors from human embryonic stem cells (hES-TEPs) and to assess their thymopoietic function in vivo. METHODS: This study differentiated hES-TEPs by mimicking developmental queues with FGF8, retinoic acid, SHH, Noggin, and BMP4. Their function was assessed in reaggregate cellular grafts under the kidney capsule and in hybrid thymi by incorporating them into swine thymus (SwTHY) grafts implanted under the kidney capsules of immunodeficient mice that received human hematopoietic stem and progenitor cells (hHSPCs) intravenously. RESULTS: Cultured hES-TEPs expressed FOXN1 and formed colonies expressing EPCAM and both cortical and medullary thymic epithelial cell markers. In thymectomized immunodeficient mice receiving hHSPCs, hES-TEPs mixed with human thymic mesenchymal cells supported human T-cell development. Hypothesizing that support from non-epithelial thymic cells might allow long-term function of hES-TEPs, the investigators injected them into SwTHY tissue, which supports human thymopoiesis in NOD severe combined immunodeficiency IL2Rγ(null) mice receiving hHSPCs. hES-TEPs integrated into SwTHY grafts, enhanced human thymopoiesis, and increased peripheral CD4(+) naive T-cell reconstitution. CONCLUSIONS: This study has developed and demonstrated in vivo thymopoietic function of hES-TEPs generated with a novel differentiation protocol. The SwTHY hybrid thymus model demonstrates beneficial effects on human thymocyte development of hES-TEPs maturing in the context of a supportive thymic structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。