The gut microbiota contributes to human health and disease; however, the mechanisms by which commensal bacteria interact with the host are still unclear. To date, a number of in vitro systems have been designed to investigate the host-microbe interactions. In most of the intestinal models, the enteroendocrine cells, considered as a potential link between gut bacteria and several human diseases, were missing. In the present study, we have generated a new model by adding enteroendocrine cells (ECC) of L-type (NCI-H716) to the one that we have previously described including enterocytes, mucus, and M cells. After 21 days of culture with the other cells, enteroendocrine-differentiated NCI-H716 cells showed neuropods at their basolateral side and expressed their specific genes encoding proglucagon (GCG) and chromogranin A (CHGA). We showed that this model could be stimulated by commensal bacteria playing a key role in health, Roseburia intestinalis and Bacteroides fragilis, but also by a pathogenic strain such as Salmonella Heidelberg. Moreover, using cell-free supernatants of B. fragilis and R. intestinalis, we have shown that R. intestinalis supernatant induced a significant increase in IL-8 and PYY but not in GCG gene expression, while B. fragilis had no impact. Our data indicated that R. intestinalis produced short chain fatty acids (SCFAs) such as butyrate whereas B. fragilis produced more propionate. However, these SCFAs were probably not the only metabolites implicated in PYY expression since butyrate alone had no effect. In conclusion, our new quadricellular model of gut epithelium could be an effective tool to highlight potential beneficial effects of bacteria or their metabolites, in order to develop new classes of probiotics.
Roseburia intestinalis Modulates PYY Expression in a New a Multicellular Model including Enteroendocrine Cells.
阅读:8
作者:Gautier Thomas, Fahet Nelly, Tamanai-Shacoori Zohreh, Oliviero Nolwenn, Blot Marielle, Sauvager Aurélie, Burel Agnes, Gall Sandrine David-Le, Tomasi Sophie, Blat Sophie, Bousarghin Latifa
| 期刊: | Microorganisms | 影响因子: | 4.200 |
| 时间: | 2022 | 起止号: | 2022 Nov 15; 10(11):2263 |
| doi: | 10.3390/microorganisms10112263 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
