The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury.

阅读:3
作者:Salas Margarita A, Valverde Carlos A, Sánchez Gina, Said Matilde, Rodriguez Jesica S, Portiansky Enrique L, Kaetzel Marcia A, Dedman John R, Donoso Paulina, Kranias Evangelia G, Mattiazzi Alicia
Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) plays an important role mediating apoptosis/necrosis during ischemia-reperfusion (IR). We explored the mechanisms of this deleterious effect. Langendorff perfused rat and transgenic mice hearts with CaMKII inhibition targeted to sarcoplasmic reticulum (SR-AIP) were subjected to global IR. The onset of reperfusion increased the phosphorylation of Thr(17) site of phospholamban, without changes in total protein, consistent with an increase in CaMKII activity. Instead, there was a proportional decrease in the phosphorylation of Ser2815 site of ryanodine receptors (RyR2) and the amount of RyR2 at the onset of reperfusion, i.e. the ratio Ser2815/RyR2 did not change. Inhibition of the reverse Na(+)/Ca(2+)exchanger (NCX) mode (KBR7943) diminished phospholamban phosphorylation, reduced apoptosis/necrosis and enhanced mechanical recovery. CaMKII-inhibition (KN-93), significantly decreased phospholamban phosphorylation, infarct area, lactate dehydrogenase release (LDH) (necrosis), TUNEL positive nuclei, caspase-3 activity, Bax/Bcl-2 ratio and Ca(2+)-induced mitochondrial swelling (apoptosis), and increased contractile recovery when compared with non-treated IR hearts or IR hearts pretreated with the inactive analog, KN-92. Blocking SR Ca(2+) loading and release (thapsigargin/dantrolene), mitochondrial Ca(2+) uniporter (ruthenium red/RU360), or mitochondrial permeability transition pore (cyclosporine A), significantly decreased infarct size, LDH release and apoptosis. SR-AIP hearts failed to show an increase in the phosphorylation of Thr(17) of phospholamban at the onset of reflow and exhibited a significant decrease in infarct size, apoptosis and necrosis respect to controls. The results reveal an apoptotic-necrotic pathway mediated by CaMKII-dependent phosphorylations at the SR, which involves the reverse NCX mode and the mitochondria as trigger and end effectors, respectively, of the cascade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。