We isolated a paclitaxel-resistant cell line (KK47/TX30) from a human bladder cancer cell line (KK47/WT) in order to investigate the mechanism of and reversal agents for paclitaxel resistance. KK47/TX30 cells exhibited 700-fold resistance to paclitaxel and cross-resistance to vinca alkaloids and topoisomerase II inhibitors. Tubulin polymerization assay showed no significant difference in the ratio of polymerized alpha- and beta-tubulin between KK47/WT and KK47/TX30 cells. Western blot analysis demonstrated overexpression of P-glycoprotein (P-gp) and lung resistance-related protein (LRP) in KK47/TX30 cells. Drug accumulation and efflux studies showed that the decreased paclitaxel accumulation in KK47/TX30 cells was due to enhanced paclitaxel efflux. Cell survival assay revealed that verapamil and cepharanthine, conventional P-gp modulators, could completely overcome paclitaxel resistance. To investigate whether new synthetic isoprenoids could overcome paclitaxel resistance, we synthesized 31 isoprenoids based on the structure of N-solanesyl-N,N'-bis(3,4-dimethoxybenzyl)ethylenediamine (SDB), which could reverse multidrug resistance (MDR), as shown previously. Among those examined, trans-N,N'-bis(3,4-dimethoxybenzyl)-N-solanesyl-1,2-diaminocyclohexane (N-5228) could completely reverse paclitaxel resistance in KK47/TX30 cells. N-5228 inhibited photoaffinity labeling of P-gp by [(3)H]azidopine, suggesting that N-5228 could bind to P-gp directly and could be a substrate of P-gp. Next, we investigated structural features of these 31 isoprenoids in order to determine the structural requirements for the reversal of P-gp-mediated paclitaxel resistance, suggesting that the following structural features are important for overcoming paclitaxel resistance: (1) a basic structure of 8 to 10 isoprene units, (2) a cyclohexane ring or benzene ring within the framework, (3) two cationic sites in close proximity to each other, and (4) a benzyl group with 3,4-dimethoxy functionalities, which have moderate electron-donating ability. These findings may provide valuable information for the development of P-gp-mediated MDR-reversing agents.
Reversal of P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in human bladder cancer cell line.
阅读:14
作者:Enokida Hideki, Gotanda Takenari, Oku Shoichi, Imazono Yoshiharu, Kubo Hiroyuki, Hanada Toshikatsu, Suzuki Shigenori, Inomata Kouhei, Kishiye Takao, Tahara Yoshiyuki, Nishiyama Kenryu, Nakagawa Masayuki
| 期刊: | Jpn J Cancer Res | 影响因子: | 0.000 |
| 时间: | 2002 | 起止号: | 2002 Sep;93(9):1037-46 |
| doi: | 10.1111/j.1349-7006.2002.tb02481.x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
