Single nucleosome imaging reveals principles of transient multiscale chromatin reorganization triggered by histone ADP-ribosylation at DNA lesions.

阅读:4
作者:García Fernández Fabiola, Park Junwoo, Chapuis Catherine, Pinto Jurado Eva, Imburchia Victor, Smith Rebecca, José Longarini Edoardo, Taddei Angela, Hubert Christian, Sokolovska Nataliya, Matić Ivan, Huet Sébastien, Miné-Hattab Judith
Timely access to DNA lesions is crucial for genome integrity. This process requires profound remodeling of densely packed chromatin to establish a repair-competent architecture. However, limited resolution has made it impossible to fully understand these remodeling events. Here, combining microirradiation with live-cell multiscale imaging, we report that DNA damage-induced changes in genome packing rely on the conformational behaviour of the chromatin fiber. Immediately after damage, a transient increase in nucleosome mobility switches chromatin from a densely-packed state to a looser conformation, making it accessible to repair. While histone poly-ADP-ribosylation is required to trigger this switch, mono-ADP-ribosylation is sufficient to maintain the open-chromatin state. The removal of these histone marks by the ARH3 hydrolase then leads to chromatin recondensation. Together, our multiscale study of chromatin dynamics establishes a global model: distinct waves of histone ADP-ribosylation control nucleosome mobility, triggering a transient breathing of chromatin, crucial for initiating the DNA damage response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。