DNA2 and MSH2 activity collectively mediate chemically stabilized G4 for efficient telomere replication.

阅读:9
作者:Fernandez Anthony, Zhou Tingting, Esworthy Steven, Shen Changxian, Liu Helen, Hess Jessica D, Yuan Hang, Liu Nian, Shi Guojun, Zhou Mian, Kosiyatrakul Settapong, Gaur Vikas, Sommers Joshua, Edelman Winfried, Li Guo-Min, Brosh Robert, Chai Weihang, Lee Marietta Y W T, Zhang Dong, Schildkraut Carl, Zheng Li, Shen Binghui
G-quadruplexes (G4s) are widely existing stable DNA secondary structures in mammalian cells. A long-standing hypothesis is that timely resolution of G4s is needed for efficient and faithful DNA replication. In vitro , G4s may be unwound by helicases or alternatively resolved via DNA2 nuclease mediated G4 cleavage. However, little is known about the biological significance and regulatory mechanism of the DNA2-mediated G4 removal pathway. Here, we report that DNA2 deficiency or its chemical inhibition leads to a significant accumulation of G4s and stalled replication forks at telomeres, which is demonstrated by a high-resolution technology: Single molecular analysis of replicating DNA (SMARD). We further identify that the DNA repair complex MutSα (MSH2-MSH6) binds G4s and stimulates G4 resolution via DNA2-mediated G4 excision. MSH2 deficiency, like DNA2 deficiency or inhibition, causes G4 accumulation and defective telomere replication. Meanwhile, G4-stabilizing environmental compounds block G4 unwinding by helicases but not G4 cleavage by DNA2. Consequently, G4 stabilizers impair telomere replication and cause telomere instabilities, especially in cells deficient in DNA2 or MSH2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。