Analysis of ignitable liquids in fire debris samples can be a time-consuming process, from extraction of volatile compounds to instrumental analysis. Rapid gas chromatography-mass spectrometry (GC-MS) is a screening technique that can be utilized prior to confirmatory GC-MS analysis to provide an informative screening approach and possibly reduce the need to further analyze negative samples. Though rapid GC-MS is fast (less than two minutes), extraction techniques such as passive headspace extraction remain a bottleneck for decreasing overall workflow times. In this work, solid phase microextraction (SPME) was implemented with rapid GC-MS for ignitable liquid analysis for a faster, more sensitive screening approach compared to extraction with passive headspace. Using optimized inlet conditions, limits of detection as low as 27 ng/mL per compound were achieved. Gasoline and diesel fuel were extracted and analyzed, and major compounds in each liquid were identified in the resulting chromatograms. Extracted ion profiles (EIPs) and deconvolution methods were useful for additional compound identifications. Lastly, the SPME-rapid GC-MS workflow was extended to the analysis of gasoline and diesel fuel in mock burn samples using carpet and wood substrates. From SPME sample extraction to rapid GC-MS instrumental analysis and data processing, the total workflow for a single sample was reduced to under 20 min. These results indicate that SPME is a suitable injection technique for rapid GC-MS to provide a fast and sensitive screening approach for fire debris applications.
Implementation of SPME and Rapid GC-MS as a Screening Approach for Forensic Fire Debris Applications.
阅读:12
作者:Capistran, Briana, A
| 期刊: | Forensic Chemistry | 影响因子: | 2.200 |
| 时间: | 2024 | 起止号: | 2024 May |
| doi: | 10.1016/j.forc.2024.100562 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
