Workflow for Validating Specific Amino Acid Footprinting Reagents for Protein Higher Order Structure Elucidation.

阅读:8
作者:Moyle Austin B, Wagner Nicole D, Wagner Wesley J, Cheng Ming, Gross Michael L
Protein footprinting mass spectrometry probes protein higher order structure and dynamics by labeling amino acid side-chains or backbone amides as a function of solvent accessibility. One category of footprinting uses residue-specific, irreversible covalent modifications, affording flexibility of sample processing for bottom-up analysis. Although several specific amino acid footprinting technologies are becoming established in structural proteomics, there remains a need to assess fundamental properties of new reagents before their application. Often, footprinting reagents are applied to complex or novel protein systems soon after their discovery and sometimes without a thorough investigation of potential downsides of the reagent. In this work, we assemble and test a validation workflow that utilizes cyclic peptides and a model protein to characterize benzoyl fluoride, a recently published, next-generation nucleophile footprinter. The workflow includes the characterization of potential side-chain reactive groups, reaction "quench" efficacies, reagent considerations and caveats (e.g., buffer pH), residue-specific kinetics compared to those of established reagents, and protein-wide characterization of modification sites with considerations for proteolysis. The proposed workflow serves as a starting point for improved footprinting reagent discovery, validation, and introduction, the aspects of which we recommend before applying to unknown protein systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。