This article optimized the compliance third-party supervision workflow of the involved enterprises based on the artificial intelligence ant colony optimization (ACO) algorithm. The basic principles and application advantages of ACO were introduced, and a heuristic information matrix was defined using ACO to optimize the data collection and analysis stage of the compliance third-party supervision workflow. During the experimental phase, a feasibility analysis was conducted on the optimization of third-party supervision workflows for compliance by ACO involved enterprises through simulation experiments. The experiments were evaluated from four aspects: data quality, model performance, scheme effectiveness, and supervision effectiveness. Among the metrics data for the ACO-optimized test set were 0.03 and 0.025 for MSE (Mean Square Error) and Î, 0.8, 0.78, 0.79, and 0.88 for Accuracy, Recall, F1 Score, and AUC-ROC (Area Under the Curve-Receiver Operating Characteristic), and 0.28, 0.4, 0.88, and 0.12 for CER (Cost-Effectiveness Ratio), NPV (Net Present Value), SCR (Supervision Coverage Rate), and CRC (Compliance Rate Change), respectively. The experimental results showed that, in terms of data quality, model performance, scheme effectiveness, and supervision effectiveness, the evaluation indicators of the compliance third-party supervision workflow of the involved enterprises optimized using ACO were superior to those without ACO optimization.
Optimizing the compliance third-party supervision workflow of involved enterprises using artificial intelligence ant colony algorithm.
阅读:3
作者:Chen Danqi, Jia Weichen, Chen Qi, Chen Jianing, Li Zhi
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 9; 15(1):12202 |
| doi: | 10.1038/s41598-025-97115-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
