Population pharmacokinetic (PK) modeling serves as the cornerstone for understanding drug behavior within a specific population. It integrates subject covariates to elucidate the variability in PK parameters, thus enhancing predictive accuracy. However, covariate modeling within this framework can be intricate and time-consuming due to the often obscure structural relationship between covariates and PK parameters. Previous attempts, such as deep compartment modeling (DCM), aimed to streamline this process using machine learning techniques. Nonetheless, DCM fell short in assessing residual errors and interindividual variability (IIV), potentially leading to model misspecification and overfitting. Furthermore, DCM lacked the ability to quantify model uncertainty. To address these limitations, we introduce hierarchical deep compartment modeling (HDCM) as an advancement of DCM. HDCM harnesses machine learning to discern the interplay between covariates and PK parameters while simultaneously evaluating diverse levels of random effects and quantifying uncertainty through Bayesian inference. This tutorial provides a comprehensive application of the HDCM workflow using open-source Julia tools.
Hierarchical deep compartment modeling: A workflow to leverage machine learning and Bayesian inference for hierarchical pharmacometric modeling.
阅读:9
作者:Elmokadem Ahmed, Wiens Matthew, Knab Timothy, Utsey Kiersten, Callisto Samuel P, Kirouac Daniel
| 期刊: | Cts-Clinical and Translational Science | 影响因子: | 2.800 |
| 时间: | 2024 | 起止号: | 2024 Oct;17(10):e70045 |
| doi: | 10.1111/cts.70045 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
