Protein-ligand docking is a computational method for identifying drug leads. The method is capable of narrowing a vast library of compounds down to a tractable size for downstream simulation or experimental testing and is widely used in drug discovery. While there has been progress in accelerating scoring of compounds with artificial intelligence, few works have bridged these successes back to the virtual screening community in terms of utility and forward-looking development. We demonstrate the power of high-speed ML models by scoring 1 billion molecules in under a day (50 k predictions per GPU seconds). We showcase a workflow for docking utilizing surrogate AI-based models as a pre-filter to a standard docking workflow. Our workflow is ten times faster at screening a library of compounds than the standard technique, with an error rate less than 0.01% of detecting the underlying best scoring 0.1% of compounds. Our analysis of the speedup explains that another order of magnitude speedup must come from model accuracy rather than computing speed. In order to drive another order of magnitude of acceleration, we share a benchmark dataset consisting of 200 million 3D complex structures and 2D structure scores across a consistent set of 13 million "in-stock" molecules over 15 receptors, or binding sites, across the SARS-CoV-2 proteome. We believe this is strong evidence for the community to begin focusing on improving the accuracy of surrogate models to improve the ability to screen massive compound libraries 100 Ã or even 1000 Ã faster than current techniques and reduce missing top hits. The technique outlined aims to be a fast drop-in replacement for docking for screening billion-scale molecular libraries.
AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection.
阅读:4
作者:Clyde Austin, Liu Xuefeng, Brettin Thomas, Yoo Hyunseung, Partin Alexander, Babuji Yadu, Blaiszik Ben, Mohd-Yusof Jamaludin, Merzky Andre, Turilli Matteo, Jha Shantenu, Ramanathan Arvind, Stevens Rick
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Feb 6; 13(1):2105 |
| doi: | 10.1038/s41598-023-28785-9 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
