BACKGROUND & AIMS: Notch and TAZ are implicated in cholangiocarcinogenesis, but whether and how these oncogenic molecules interact remain unknown. METHODS: The development of cholangiocarcinoma (CCA) was induced by hydrodynamic tail vein injection of oncogenes (Notch1 intracellular domain [NICD]/AKT) to the FVB/NJ mice. CCA xenograft was developed by inoculation of human CCA cells into the livers of SCID mice. Tissues and cells were analyzed using quantitative reverse transcription polymerase chain reaction, Western blotting analyses, immunohistochemistry, chromatin immunoprecipitation-quantitative polymerase chain reaction and WST-1 cell proliferation assay. RESULTS: Our experimental findings show that TAZ is indispensable in NICD-driven cholangiocarcinogenesis. Notch activation induces the expression of methyltransferase like-3 (METTL3), which catalyzes N6-methyladenosine modification of TAZ mRNA and that this mechanism plays a central role in the crosstalk between Notch and TAZ in CCA cells. Mechanistically, Notch regulates the expression of METTL3 through the binding of NICD to its downstream transcription factor CSL in the promoter region of METTL3. METTL3 in turn mediates N6-methyladenosine modification of TAZ mRNA, which is recognized by the m6A reader YTHDF1 to enhance TAZ protein translation. We observed that inhibition of Notch signaling decreased the protein levels of both MELLT3 and TAZ. Depletion of METTL3 by short hairpin RNAs or by the next generation GapmeR antisense oligonucleotides decreased the level of TAZ protein and inhibited the growth of human CCA cells in vitro and in mice. CONCLUSIONS: This study describes a novel Notch-METTL3-TAZ signaling cascade, which is important in CCA development and progression. Our experimental results provide new insight into how the Notch pathway cooperates with TAZ signaling in CCA, and the findings may have important therapeutic implications.
Notch-Driven Cholangiocarcinogenesis Involves the Hippo Pathway Effector TAZ via METTL3-m6A-YTHDF1.
Notch 驱动的胆管癌发生涉及 Hippo 通路效应因子 TAZ,该通路通过 METTL3-m6A-YTHDF1 发挥作用
阅读:8
作者:Ma Wenbo, Zhang Jinqiang, Chen Weina, Liu Nianli, Wu Tong
| 期刊: | Cellular and Molecular Gastroenterology and Hepatology | 影响因子: | 7.400 |
| 时间: | 2025 | 起止号: | 2025;19(1):101417 |
| doi: | 10.1016/j.jcmgh.2024.101417 | 研究方向: | 肿瘤 |
| 信号通路: | Hippo、Notch | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
