Microbial nitrate reduction coupled to iron(II) oxidation (NRFeOx) occurs in paddy soils due to high levels of dissolved iron(II) and regular application of nitrogen fertilizer. However, to date, there is no lithoautotrophic NRFeOx isolate or enrichment culture available from this soil environment. Thus, resulting impacts on greenhouse gas emissions during nitrate reduction (i.e., nitrous oxide [N(2)O]) and on toxic metalloid (i.e., arsenic) mobility can hardly be investigated. We enriched a lithoautotrophic NRFeOx culture, culture HP (Huilongpu paddy, named after its origin), from a paddy soil (Huilongpu Town, China), which was dominated by Gallionella (71%). The culture reduced 0.45 to 0.63 mM nitrate and oxidized 1.76 to 2.31 mM iron(II) within 4 days leading to N(2)O as the main N-product (62%-88% N(2)O-N of total reduced NO(3)(-)-N). Nitrite was present as an intermediate at a maximum of 0.16 ± 0.1 mM. Cells were associated with, but mostly not encrusted by, poorly crystalline iron(III) minerals (ferrihydrite). Culture HP performed best below an iron(II) threshold of 2.5-3.5 mM and in a pH range of 6.50-7.05. In the presence of 100 µM arsenite, only 0%-18% of iron(II) was oxidized. Due to low iron(II) oxidation, arsenite was not immobilized. However, the proportion of N(2)O-N of total reduced NO(3)(-)-N decreased from 77% to 30%. Our results indicate that lithoautotrophic NRFeOx occurs even in organic-rich paddy soils, resulting in denitrification and subsequent N(2)O emissions. The obtained novel enrichment culture allows us to study the impact of lithoautotrophic NRFeOx on arsenic mobility and N(2)O emissions in paddy soils.IMPORTANCEPaddy soils are naturally rich in iron(II) and regularly experience nitrogen inputs due to fertilization. Nitrogen fertilization increases nitrous oxide emissions as it is an intermediate product during nitrate reduction. Microorganisms can live using nitrate and iron(II) as electron acceptor and donor, respectively, but mostly require an organic co-substrate. By contrast, microorganisms that only rely on nitrate, iron(II), and CO(2) could inhabit carbon-limited ecological niches. So far, no isolate or consortium of lithoautotrophic iron(II)-oxidizing, nitrate-reducing microorganisms has been obtained from paddy soil. Here, we describe a lithoautotrophic enrichment culture, dominated by a typical iron(II)-oxidizer (Gallionella), that oxidized iron(II) and reduced nitrate to nitrous oxide, negatively impacting greenhouse gas dynamics. High arsenic concentrations were toxic to the culture but decreased the proportion of nitrous oxide of the total reduced nitrate. Our results suggest that autotrophic nitrate reduction coupled with iron(II) oxidation is a relevant, previously overlooked process in paddy soils.
Nitrous oxide is the main product during nitrate reduction by a novel lithoautotrophic iron(II)-oxidizing culture from an organic-rich paddy soil.
来自富含有机质稻田土壤的新型岩生自养铁(II)氧化菌在硝酸盐还原过程中的主要产物是一氧化二氮
阅读:8
作者:Grimm Hanna, Lorenz Jennifer, Straub Daniel, Joshi Prachi, Shuster Jeremiah, Zarfl Christiane, Muehe E Marie, Kappler Andreas
| 期刊: | Applied and Environmental Microbiology | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 31; 91(1):e0126224 |
| doi: | 10.1128/aem.01262-24 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
