Characterizing chemical signaling between engineered "microbial sentinels" in porous microplates.

对多孔微孔板中工程化“微生物哨兵”之间的化学信号进行表征

阅读:4
作者:Vaiana Christopher A, Kim Hyungseok, Cottet Jonathan, Oai Keiko, Ge Zhifei, Conforti Kameron, King Andrew M, Meyer Adam J, Chen Haorong, Voigt Christopher A, Buie Cullen R
Living materials combine a material scaffold, that is often porous, with engineered cells that perform sensing, computing, and biosynthetic tasks. Designing such systems is difficult because little is known regarding signaling transport parameters in the material. Here, the development of a porous microplate is presented. Hydrogel barriers between wells have a porosity of 60% and a tortuosity factor of 1.6, allowing molecular diffusion between wells. The permeability of dyes, antibiotics, inducers, and quorum signals between wells were characterized. A "sentinel" strain was constructed by introducing orthogonal sensors into the genome of Escherichia coli MG1655 for IPTG, anhydrotetracycline, L-arabinose, and four quorum signals. The strain's response to inducer diffusion through the wells was quantified up to 14 mm, and quorum and antibacterial signaling were measured over 16 h. Signaling distance is dictated by hydrogel adsorption, quantified using a linear finite element model that yields adsorption coefficients from 0 to 0.1 mol m(-3) . Parameters derived herein will aid the design of living materials for pathogen remediation, computation, and self-organizing biofilms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。