Identification of a natural human leukocyte antigen (HLA) ligandome is a key element to understand the cellular immune response. Advanced high throughput mass spectrometry analyses identify a relevant, but not complete, fraction of the many tens of thousands of self-peptides generated by antigen processing in live cells. In infected cells, in addition to this complex HLA ligandome, a minority of peptides from degradation of the few proteins encoded by the viral genome are also bound to HLA class I molecules. In this study, the standard immunopeptidomics strategy was modified to include the classical acid stripping treatment after virus infection to enrich the HLA ligandome in virus ligands. Complexes of HLA-B*27:05-bound peptide pools were isolated from vaccinia virus (VACV)-infected cells treated with acid stripping after virus infection. The HLA class I ligandome was identified using high throughput mass spectrometry analyses, yielding 37 and 51 natural peptides processed and presented untreated and after acid stripping treatment VACV-infected human cells, respectively. Most of these virus ligands were identified in both conditions, but exclusive VACV ligands detected by mass spectrometry detected on acid stripping treatment doubled the number of those identified in the untreated VACV-infected condition. Theoretical binding affinity prediction of the VACV HLA-B*27:05 ligands and acute antiviral T cell response characterization in the HLA transgenic mice model showed no differences between HLA ligands identified under the two conditions: untreated and under acid stripping condition. These findings indicated that acid stripping treatment could be useful to identify HLA class I ligands from virus-infected cells.
Acid Stripping after Infection Improves the Detection of Viral HLA Class I Natural Ligands Identified by Mass Spectrometry.
感染后酸洗可提高质谱法鉴定的病毒 HLA I 类天然配体的检测率
阅读:3
作者:Lorente Elena, Marcilla Miguel, de la Sota Patricia G, Quijada-Freire Adriana, Mir Carmen, López Daniel
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2021 | 起止号: | 2021 Sep 29; 22(19):10503 |
| doi: | 10.3390/ijms221910503 | 种属: | Viral |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
