How surface charges affect interdroplet freezing.

表面电荷如何影响液滴间的冻结

阅读:4
作者:Yang Siyan, Ji Bingqiang, Feng Yawei, Jin Yuankai, Xu Wanghuai, Lu Jingyi, Qin Xuezhi, Zhang Huanhuan, Li Mingyu, Xu Zhenyu, Liu Xiaonan, Xu Luqing, Wang Dehui, Wen Rongfu, Wang Zhenying, Wang Steven, Ma Xuehu, Wang Zuankai
The freezing of droplets on surfaces is closely relevant with various industrial processes such as aviation, navigation, and transportation. Previous studies mainly focus on physiochemically heterogeneous but electrically homogeneous surfaces, on which the presence of vapor pressure gradient between droplets is the predominant mechanism for interdroplet freezing bridging, propagation, and eventual frosting across the entire surface. An interesting yet unanswered question is whether electrostatic charge on surfaces affects freezing dynamics. Here, we find an interdroplet freezing relay (IFR) phenomenon on electrically heterogeneous surfaces that exhibits a three-dimensional, in-air freezing propagation pathway and an accelerated freezing rate. Theoretical and experimental investigations demonstrate that this phenomenon originates from the presence of surface charge gradient established between the frozen droplet and neighboring water droplet, which leads to a spontaneous shooting of desublimated ice needles from the frozen droplet and then triggers the freezing of neighboring water droplet in in-air manner. We further demonstrate its generality across various dielectric substrates, liquids, and droplet configurations. Our work enriches conventional perspectives on droplet freezing dynamics and emphasizes the pivotal role of electrostatics in designing passive anti-icing and antifrosting materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。