Environmental chemicals may contribute to the global burden of cardiovascular disease, but experimental data are lacking to determine which substances pose the greatest risk. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a high-throughput cardiotoxicity model that is widely used to test drugs and chemicals; however, most studies focus on exploring electro-physiological readouts. Gene expression data may provide additional molecular insights to be used for both mechanistic interpretation and dose-response analyses. Therefore, we hypothesized that both transcriptomic and functional data in human iPSC-derived cardiomyocytes may be used as a comprehensive screening tool to identify potential cardiotoxicity hazards and risks of the chemicals. To test this hypothesis, we performed concentration-response analysis of 464 chemicals from 12 classes, including both pharmaceuticals and nonpharmaceutical substances. Functional effects (beat frequency, QT prolongation, and asystole), cytotoxicity, and whole transcriptome response were evaluated. Points of departure were derived from phenotypic and transcriptomic data, and risk characterization was performed. Overall, 244 (53%) substances were active in at least one phenotype; as expected, pharmaceuticals with known cardiac liabilities were the most active. Positive chronotropy was the functional phenotype activated by the largest number of tested chemicals. No chemical class was particularly prone to pose a potential hazard to cardiomyocytes; a varying proportion (10-44%) of substances in each class had effects on cardiomyocytes. Transcriptomic data showed that 69 (15%) substances elicited significant gene expression changes; most perturbed pathways were highly relevant to known key characteristics of human cardiotoxicants. The bioactivity-to-exposure ratios showed that phenotypic- and transcriptomic-based POD led to similar results for risk characterization. Overall, our findings demonstrate how the integrative use of in vitro transcriptomic and phenotypic data from iPSC-derived cardiomyocytes not only offers a complementary approach for hazard and risk prioritization, but also enables mechanistic interpretation of the in vitro test results to increase confidence in decision-making.
Informing Hazard Identification and Risk Characterization of Environmental Chemicals by Combining Transcriptomic and Functional Data from Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocytes.
结合人诱导多能干细胞衍生心肌细胞的转录组学和功能数据,为环境化学品的危害识别和风险表征提供信息
阅读:5
作者:Tsai Han-Hsuan D, Ford Lucie C, Burnett Sarah D, Dickey Allison N, Wright Fred A, Chiu Weihsueh A, Rusyn Ivan
| 期刊: | Chemical Research in Toxicology | 影响因子: | 3.800 |
| 时间: | 2024 | 起止号: | 2024 Aug 19; 37(8):1428-1444 |
| doi: | 10.1021/acs.chemrestox.4c00193 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
