Protoplast-based transformation is a vital tool for genetic studies in fungi, yet no protoplast method existed for P. sclerotiorum-scaumcx01 before this study. Here, we optimized protoplast isolation, regeneration, and transformation efficiency. The highest protoplast yield (6.72 à 10(6) cells/mL) was obtained from liquid mycelium after 12 h of enzymatic digestion at 28 °C using Lysing Enzymes, Yatalase, cellulase, and pectinase. Among osmotic stabilizers, 1 M MgSO(4) yielded the most viable protoplasts. Regeneration occurred via direct mycelial outgrowth and new protoplast formation, with a 1.02% regeneration rate. PEG-mediated transformation with a hygromycin resistance gene and GFP tagging resulted in stable GFP expression in fungal spores and mycelium over five generations. LC/MS-based metabolomic analysis revealed significant changes in glycerophospholipid metabolism, indicating lipid-related dynamics influenced by GFP tagging. Microscopy confirmed successful colonization of tomato roots by GFP-tagged scaumcx01, with GFP fluorescence observed in cortical tissues. Enzymatic (cellulase) seed pretreatment enhanced fungal colonization by modifying root surface properties, promoting plant-fungal interaction. This study establishes an efficient protoplast transformation system, reveals the metabolic impacts of genetic modifications, and demonstrates the potential of enzymatic seed treatment for enhancing plant-fungal interactions.
PEG-Mediated Protoplast Transformation of Penicillium sclerotiorum (scaumcx01): Metabolomic Shifts and Root Colonization Dynamics.
PEG介导的核盘青霉(scaumcx01)原生质体转化:代谢组学变化和根系定殖动态
阅读:3
作者:Jahan Israt, Yang Qilin, Guan Zijun, Wang Yihan, Li Ping, Jian Yan
| 期刊: | Journal of Fungi | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 May 17; 11(5):386 |
| doi: | 10.3390/jof11050386 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
