It has recently been shown that an increase in the cellular chelatable iron pool is sufficient to cause cell damage. To further characterize this kind of injury, we artificially enhanced the chelatable iron pool in L929 mouse fibroblasts using the highly membrane-permeable complex Fe(III)/8-hydroxyquinoline. This iron complex induced a significant oxygen-dependent loss of viability during an incubation period of 5 h. Surprisingly, the addition of L-glucose strongly enhanced this toxicity whereas no such effect was exerted by L-glucose and 2-deoxyglucose. The assumption that this increase in toxicity might be due to an enhanced availability of reducing equivalents formed during the metabolism of L-glucose was supported by NAD(P)H measurements which showed a 1.5-2-fold increase in the cellular NAD(P)H content upon addition of L-glucose. To assess the influence of this enhanced cellular reducing capacity on iron valence we established a new method to measure the reduction rate of iron based on the fluorescent iron(II) indicator PhenGreen SK. We could show that the rate of intracellular iron reduction was more than doubled in the presence of L-glucose. A similar acceleration was achieved by adding the reducing agents ascorbate and glutathione (the latter as membrane-permeable ethyl ester). Glutathione ethyl ester, as well as the thiol reagent N -acetylcysteine, also caused a toxicity increase comparable with L-glucose. These results suggest an enhancement of iron toxicity by L-glucose via an accelerated (re-)reduction of iron with NAD(P)H serving as central electron provider and ascorbate, glutathione or possibly NAD(P)H itself as final reducing agent.
Enhancement of iron toxicity in L929 cells by D-glucose: accelerated(re-)reduction.
D-葡萄糖增强L929细胞的铁毒性:加速(再)还原
阅读:5
作者:Lehnen-Beyel Ilka, Groot Herbert De, Rauen Ursula
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2002 | 起止号: | 2002 Dec 1; 368(Pt 2):517-26 |
| doi: | 10.1042/BJ20020639 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
