Vulnerability of the retinal microvasculature to oxidative stress: ion channel-dependent mechanisms.

视网膜微血管对氧化应激的脆弱性:离子通道依赖性机制

阅读:3
作者:Fukumoto Masanori, Nakaizumi Atsuko, Zhang Ting, Lentz Stephen I, Shibata Maho, Puro Donald G
Although oxidative stress is a hallmark of important vascular disorders such as diabetic retinopathy, it remains unclear why the retinal microvasculature is particularly vulnerable to this pathophysiological condition. We postulated that redox-sensitive ion channels may play a role. Using H(2)O(2) to cause oxidative stress in microvascular complexes freshly isolated from the adult rat retina, we assessed ionic currents, cell viability, intracellular oxidants, and cell calcium by using perforated-patch recordings, trypan blue dye exclusion, and fura-2 fluorescence, respectively. Supporting a role for the oxidant-sensitive ATP-sensitive K (K(ATP)) channels, we found that these channels are activated during exposure of retinal microvessels to H(2)O(2). Furthermore, their inhibition by glibenclamide significantly lessened H(2)O(2)-induced microvascular cell death. Additional experiments established that by increasing the influx of calcium into microvascular cells, the K(ATP) channel-mediated hyperpolarization boosted the vulnerability of these cells to oxidative stress. In addition to the K(ATP) channel-dependent mechanism for increasing the lethality of oxidative stress, we also found that the vulnerability of cells in the capillaries, but not in the arterioles, was further boosted by a K(ATP) channel-independent mechanism, which our experiments indicated involves the oxidant-induced activation of calcium-permeable nonspecific cation channels. Taken together, our findings support a working model in which both K(ATP) channel-independent and K(ATP) channel-dependent mechanisms render the capillaries of the retina particularly vulnerable to oxidative stress. Identification of these previously unappreciated mechanisms for boosting the lethality of oxidants may provide new targets for pharmacologically limiting damage to the retinal microvasculature during periods of oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。