The effects of different exercise modes for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats.

不同运动方式对预防卵巢切除大鼠动脉内皮功能障碍和骨质流失的影响

阅读:4
作者:Park Jonghoon, Omi Naomi
PURPOSE: Several epidemiological studies have demonstrated that there are positive correlations between vascular disorders and bone loss in postmenopausal women. The aim of the present study was to examine the effect of different types of exercise (e.g., climbing and swimming) for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats. METHODS: Twenty Sprague-Dawley female rats were randomly divided into three groups: ovariectomy (OVX) plus treatment with vitamin D3 and nicotine (VDN) (control rats [Con], n = 7), which is an animal model for endothelial dysfunction and bone loss; voluntary climbing resistance exercise with OVX plus VDN (climbing rats [Clim], n = 6), and swimming exercise with OVX plus VDN (swimming rats [Swim], n = 7). The period of exercise training was 8 weeks. RESULTS: The endothelin-1 (ET-1) protein levels were significantly lower in the Clim and Swim groups than in the Con. The endothelial nitric oxide synthase protein levels were significantly higher in the Swim group than in the Con, but they did not differ between the Clim and Con groups. The cortical bone mineral density in the tibia and breaking energy of the femur were significantly higher in the Clim group than in the Con, but this positive effect was not seen in the Swim group. CONCLUSION: Voluntary climbing exercise decreased arterial ET-1 protein levels and prevented bone loss in a postmenopause-model rat combining OVX and VDN. Conversely, swimming suppressed endothelial dysfunction of the arteries but did not prevent bone loss. Thus, the type of exercise should be cautiously chosen for enhancing vascular function and bone status, especially in females after menopause.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。