Genetic variation and association of yield, yield components, and carbon storage in sorghum (Sorghum bicolor [L.] Moench) genotypes.

高粱(Sorghum bicolor [L.] Moench)基因型的遗传变异及其与产量、产量构成和碳储存的关联

阅读:4
作者:Ngidi Asande, Shimelis Hussein, Abady Seltene, Chaplot Vincent, Figlan Sandiswa
Trait heritability and the response to selection depend on genetic variation, a prerequisite to developing sorghum varieties with desirable agronomic traits and high carbon sequestration for sustainable crop production and soil health. The present study aimed to assess the extent of genetic variability and associations among agronomic and carbon storage traits in selected sorghum genotypes to identify the best candidates for production or breeding. Fifty genotypes were evaluated at Ukulinga, Bethlehem and Silverton sites in South Africa during the 2022/23 growing season. The following agronomic and carbon storage traits were collected: days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), grain yield (GY), harvest index (HI), shoot carbon content (SCc), root carbon content (RCc), grain carbon content (GCc), total plant carbon stock (PCs), shoot carbon stock (SCs), root carbon stock (RCs), and root-to-shoot carbon stock ratio (RCs/SCs), and grain carbon stock (GCs). Higher genotypic coefficient of variations (GCVs) were recorded for GY at 45.92%, RB (39.24%), RCs/SCs (38.45), and RCs (34.62). Higher phenotypic coefficient of variations (PCVs) were recorded for PH (68.91%), followed by GY (51.8%), RB (50.51%), RS (41.96%), RCs/SCs (44.90%), and GCs (41.90%). High broad-sense heritability and genetic advance were recorded for HI (83.76 and 24.53%), GY (78.59 and 9.98%), PB (74.14 and 13.18%) and PCs (53.63 and 37.57%), respectively, suggesting a marked genetic contribution to the traits. Grain yield exhibited positive association with HI (r = 0.76; r = 0.79), DTH (r = 0.13; r = 0.31), PH (r = 0.1; r = 0.27), PB (r = 0.01; r = 0.02), RB (r = 0.05; r = 0.06) based on genotypic and phenotypic correlations, respectively. Further, the path analysis revealed significant positive direct effects of SB (0.607) and RB (0.456) on GY. The RS exerted a positive and significant indirect effect (0.229) on grain yield through SB. The study revealed that PB, SB, RB, RS, RCs, and RCs/SCs are the principal traits when selecting sorghum genotypes with high yield and carbon storage capacity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。