Trait heritability and the response to selection depend on genetic variation, a prerequisite to developing sorghum varieties with desirable agronomic traits and high carbon sequestration for sustainable crop production and soil health. The present study aimed to assess the extent of genetic variability and associations among agronomic and carbon storage traits in selected sorghum genotypes to identify the best candidates for production or breeding. Fifty genotypes were evaluated at Ukulinga, Bethlehem and Silverton sites in South Africa during the 2022/23 growing season. The following agronomic and carbon storage traits were collected: days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), grain yield (GY), harvest index (HI), shoot carbon content (SCc), root carbon content (RCc), grain carbon content (GCc), total plant carbon stock (PCs), shoot carbon stock (SCs), root carbon stock (RCs), and root-to-shoot carbon stock ratio (RCs/SCs), and grain carbon stock (GCs). Higher genotypic coefficient of variations (GCVs) were recorded for GY at 45.92%, RB (39.24%), RCs/SCs (38.45), and RCs (34.62). Higher phenotypic coefficient of variations (PCVs) were recorded for PH (68.91%), followed by GY (51.8%), RB (50.51%), RS (41.96%), RCs/SCs (44.90%), and GCs (41.90%). High broad-sense heritability and genetic advance were recorded for HI (83.76 and 24.53%), GY (78.59 and 9.98%), PB (74.14 and 13.18%) and PCs (53.63 and 37.57%), respectively, suggesting a marked genetic contribution to the traits. Grain yield exhibited positive association with HI (râ=â0.76; râ=â0.79), DTH (râ=â0.13; râ=â0.31), PH (râ=â0.1; râ=â0.27), PB (râ=â0.01; râ=â0.02), RB (râ=â0.05; râ=â0.06) based on genotypic and phenotypic correlations, respectively. Further, the path analysis revealed significant positive direct effects of SB (0.607) and RB (0.456) on GY. The RS exerted a positive and significant indirect effect (0.229) on grain yield through SB. The study revealed that PB, SB, RB, RS, RCs, and RCs/SCs are the principal traits when selecting sorghum genotypes with high yield and carbon storage capacity.
Genetic variation and association of yield, yield components, and carbon storage in sorghum (Sorghum bicolor [L.] Moench) genotypes.
高粱(Sorghum bicolor [L.] Moench)基因型的遗传变异及其与产量、产量构成和碳储存的关联
阅读:17
作者:Ngidi Asande, Shimelis Hussein, Abady Seltene, Chaplot Vincent, Figlan Sandiswa
| 期刊: | BMC Genomic Data | 影响因子: | 2.500 |
| 时间: | 2024 | 起止号: | 2024 Aug 1; 25(1):74 |
| doi: | 10.1186/s12863-024-01256-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
