Lizard skin can produce scales during embryonic development, tail regeneration, and wound healing; however, underlying molecular signaling and extracellular matrix protein expression remains unknown. We mapped cell proliferation, signaling and extracellular matrix proteins in regenerating and developing lizard scales in different body regions with different wound severity. Following lizard tail autotomy (self-amputation), de novo scales regenerate from regenerating tail blastema. Despite topological differences between embryonic and adult scale formation, asymmetric cell proliferation produces the newly formed outer scale surface. Regionally different responses to wounding were observed; open wounds induced better scale regeneration from tail skin than trunk skin. Molecular studies suggest NCAM enriched dermal regions exhibit higher cell proliferation associated with scale growth. β-catenin may be involved in epidermal scale differentiation. Dynamic tenascin-C expression suggests its involvement in regeneration. We conclude that different skin regions exhibit different competence for de novo scale formation. While cellular and morphogenetic paths differ during development and regeneration of lizard scale formation, they share general proliferation patterns, epithelial-mesenchymal interactions and similar molecular modules composed of adhesion and extracellular matrix molecules.
Regeneration of reptilian scales after wounding: neogenesis, regional difference, and molecular modules.
爬行动物鳞片受伤后的再生:新生、区域差异和分子模块
阅读:3
作者:Wu Ping, Alibardi Lorenzo, Chuong Cheng-Ming
| 期刊: | Regeneration (Oxf) | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014 Feb 1; 1(1):15-26 |
| doi: | 10.1002/reg2.9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
