Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4.

硫链丝菌素抑制稳定的 70S 核糖体结合以及核糖体依赖的 GTPase 激活延伸因子 G 和延伸因子 4

阅读:3
作者:Walter Justin D, Hunter Margaret, Cobb Melanie, Traeger Geoff, Spiegel P Clint
Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。