Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of ygi and yad fimbriae.

菌毛谱预测泌尿道致病性大肠杆菌菌株的毒力:ygi 和 yad 菌毛的贡献

阅读:2
作者:Spurbeck Rachel R, Stapleton Ann E, Johnson James R, Walk Seth T, Hooton Thomas M, Mobley Harry L T
Escherichia coli, a cause of ∼90% of urinary tract infections (UTI), utilizes fimbrial adhesins to colonize the uroepithelium. Pyelonephritis isolate E. coli CFT073 carries 12 fimbrial operons, 5 of which have never been studied. Using multiplex PCR, the prevalence of these 12 and 3 additional fimbrial types was determined for a collection of 303 E. coli isolates (57 human commensal, 32 animal commensal, 54 asymptomatic bacteriuria, 45 complicated UTI, 38 uncomplicated cystitis, and 77 pyelonephritis). The number of fimbrial types per E. coli isolate was distributed bimodally: those with low (3.2 ± 1.1) and those with high (8.3 ± 1.3) numbers of fimbrial types (means ± standard errors of the means). The fimbrial genes ygiL, yadN, yfcV, and c2395 were significantly more prevalent among urine isolates than human commensal isolates. The effect of deletion of Ygi and Yad fimbrial operons on growth, motility, biofilm formation, adherence to immortalized human epithelial cells, and pathogenesis in the mouse model of UTI was examined. Yad fimbriae were necessary for wild-type levels of adherence to a bladder epithelial cell line and for biofilm formation. Deletion of these fimbrial genes increased motility. Ygi fimbriae were necessary for wild-type levels of adherence to a human embryonic kidney cell line, biofilm formation, and in vivo fitness in the urine and kidneys. Complementation of each fimbrial mutant restored wild-type levels of motility, biofilm formation, adherence and, for ygi, in vivo fitness. A double deletion strain, Δygi Δyad, was attenuated in the urine, bladder, and kidneys in the mouse model, demonstrating that these fimbriae contribute to uropathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。