Selective and specific regulation of ectodomain shedding of angiotensin-converting enzyme 2 by tumor necrosis factor alpha-converting enzyme

肿瘤坏死因子-α转换酶对血管紧张素转换酶2胞外域脱落的选择性和特异性调节

阅读:5
作者:Michikado Iwata, Jorge E Silva Enciso, Barry H Greenberg

Abstract

Angiotensin-converting enzyme 2 (ACE2) is a newly identified regulator of the renin-angiotensin system. This type I membrane-anchored protein has a catalytically active ectodomain that undergoes shedding. Tumor necrosis factor alpha-converting enzyme (TACE) has been shown to be involved in ACE2 shedding. Although pathophysiological significance of ACE2 shedding has been suggested, regulation of this process by TACE is not clearly defined. We characterized TACE-mediated constitutive ectodomain shedding of ACE2 using wild-type Chinese Hamster Ovary (WT-CHO), the TACE-mutant M2 (M2-CHO) cells, and EC-4 and EC-2 cells that are fibroblasts from wild-type and TACE-null mice, respectively. ACE2 was constitutively cleaved to release two distinct major soluble forms. The deglycosylated molecular masses of the larger (LSF) and smaller soluble form (SSF) were approximately 80 and 70 kDa, respectively. These forms had equivalent enzyme activities. Reduced shedding for the LSF from M2-CHO and EC-2 cells when compared with WT-CHO and EC-4 cells, respectively, was noted. TACE reconstitution in EC-2 cells expressing ACE2 resulted in increase in LSF but not SSF release, demonstrating a main role of TACE in LSF release and distinct regulations of release of the two soluble forms. Deletions of the juxtamembrane region of ACE2 reduced LSF release in CHO cell lines, whereas it abolished TACE-induced shedding in EC-2 cells. Analysis of TACE structural domains confirmed that the active site in the catalytic domain is essential for ACE2 shedding but that noncatalytic domains also play additional roles. These results demonstrate selective and specific regulation of constitutive shedding of ACE2 by TACE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。