Nonstomatal water loss by transpiration through the hydrophobic cuticle is ubiquitous in land plants, but the pathways along which this occurs have not been identified. Tomato (Solanum lycopersicum) provides an excellent system in which to study this phenomenon, as its fruit are astomatous and a major target for desiccation resistance to enhance shelf life. We screened a tomato core collection of 398 accessions from around the world and selected seven cultivars that collectively exhibited the lowest and highest degrees of transpirational water loss for a more detailed study. The transpirational differences between these lines reflected the permeances of their isolated cuticles, but this did not correlate with various measures of cuticle abundance or composition. Rather, we found that fruit cuticle permeance has a strong dependence on the abundance of microscopic polar pores. We further observed that these transcuticular pores are associated with trichomes and are exposed when the trichomes are dislodged, revealing a previously unreported link between fruit trichome density and transpirational water loss. During postharvest storage, limited self-sealing of the pores was detected for certain cultivars, in contrast with the stem scar, which healed relatively rapidly. The abundance of trichome-associated pores, together with their self-sealing capacity, presents a promising target for breeding or engineering efforts to reduce fruit transpirational water loss.
Transpiration from Tomato Fruit Occurs Primarily via Trichome-Associated Transcuticular Polar Pores.
番茄果实的蒸腾作用主要通过与毛状体相关的表皮极孔进行
阅读:4
作者:Fich Eric A, Fisher Josef, Zamir Dani, Rose Jocelyn K C
| 期刊: | Plant Physiology | 影响因子: | 6.900 |
| 时间: | 2020 | 起止号: | 2020 Dec;184(4):1840-1852 |
| doi: | 10.1104/pp.20.01105 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
