Prenatal hypoxia impairs cardiac mitochondrial and ventricular function in guinea pig offspring in a sex-related manner.

产前缺氧会以性别相关的方式损害豚鼠后代的心脏线粒体和心室功能

阅读:3
作者:Thompson Loren P, Chen Ling, Polster Brian M, Pinkas Gerard, Song Hong
Adverse intrauterine conditions cause fetal growth restriction and increase the risk of adult cardiovascular disease. We hypothesize that intrauterine hypoxia impairs fetal heart function, is sustained after birth, and manifests as both cardiac and mitochondrial dysfunction in offspring guinea pigs (GPs). Pregnant GPs were exposed to 10.5% O(2) (HPX) at 50 days of gestation (full term = 65 days) or normoxia (NMX) for the duration of the pregnancy. Pups were allowed to deliver vaginally and raised in a NMX environment. At 90 days of age, mean arterial pressure (MAP) was measured in anesthetized GPs. NMX and prenatally HPX offspring underwent echocardiographic imaging for in vivo measurement of left ventricular cardiac morphology and function, and O(2) consumption rates and complex IV enzyme activity were measured from isolated cardiomyocytes and mitochondria, respectively. Prenatal HPX increased ( P < 0.01) MAP (52.3 ± 1.3 and 58.4 ± 1.1 mmHg in NMX and HPX, respectively) and decreased ( P < 0.05) stroke volume (439.8 ± 54.5 and 289.4 ± 15.8 μl in NMX and HPX, respectively), cardiac output (94.4 ± 11.2 and 67.3 ± 3.8 ml/min in NMX and HPX, respectively), ejection fraction, and fractional shortening in male, but not female, GPs. HPX had no effect on left ventricular wall thickness or end-diastolic volume in either sex. HPX reduced mitochondrial maximal respiration and respiratory reserve capacity and complex IV activity rates in hearts of male, but not female, GPs. Prenatal HPX is a programming stimulus that increases MAP and decreases cardiac and mitochondrial function in male offspring. Sex-related differences in the contractile and mitochondrial responses suggest that female GPs are protected from cardiovascular programming of prenatal HPX.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。