Infectious diseases often present as coinfections that may affect each other in positive or negative ways. Understanding the relationship between two coinfecting pathogens is thus important to understand the risk of infection and burden of disease caused by each pathogen. Although coinfections with Plasmodium falciparum and Plasmodium vivax are very common outside Africa, it is yet unclear whether infections by the two parasite species are positively associated or if infection by one parasite suppresses the other. In this study, we use bivariate Poisson lognormal models (BPLM) to estimate covariate-adjusted associations between the incidence of infections (as measured by the force of blood-stage infections, (mol)FOI) and clinical episodes caused by both P. falciparum and P. vivax in a cohort of Papua New Guinean children. A BPLM permits estimation of either positive or negative correlation, unlike most other multivariate Poisson models. Our results demonstrated a moderately positive association between P. falciparum and P. vivax infection rates, arguing against the hypothesis that P. vivax infections protect against P. falciparum infections. Our findings also suggest that the BPLM is only useful for counts with suitably large means and overdispersion.
Joint Modeling of Mixed Plasmodium Species Infections Using a Bivariate Poisson Lognormal Model.
利用二元泊松对数正态模型对混合疟原虫感染进行联合建模
阅读:4
作者:Colborn Kathryn L, Mueller Ivo, Speed Terence P
| 期刊: | American Journal of Tropical Medicine and Hygiene | 影响因子: | 1.600 |
| 时间: | 2018 | 起止号: | 2018 Jan;98(1):71-76 |
| doi: | 10.4269/ajtmh.17-0523 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
