Perineuronal nets (PNNs), a complex of extracellular matrix molecules that mostly surround GABAergic neurons in various brain regions, play a critical role in synaptic plasticity. The function and cellular mechanisms of PNNs in memory consolidation and reconsolidation processes are still not well understood. We hypothesized that PNNs protect long-term memory by limiting feedback inhibition from parvalbumin (PV) interneurons to projection neurons. Using behavioral, electrophysiological, and optogenetic approaches, we investigated the role of PNNs in fear memory consolidation and reconsolidation and GABAergic long-term potentiation (LTP). We made the discovery that the formation of PNNs was promoted by memory events in the hippocampus (HP), and we also demonstrated that PNN formation in both the HP and the anterior cingulate cortex (ACC) is essential for memory consolidation and reconsolidation of recent and remote memories. Removal of PNNs resulted in evident LTP impairments, which were rescued by acute application of picrotoxin, a GABA(A) receptor blocker, indicating that enhanced inhibition was the cause of the LTP impairments induced by PNN removal. Moreover, removal of PNNs switched GABA(A) receptor-mediated long-term depression to LTP through a presynaptic mechanism. Furthermore, the reduced activity of PV interneurons surrounded by PNNs regulated theta oscillations during fear memory consolidation. Finally, optogenetically suppressing PV interneurons rescued the memory impairment caused by removal of PNNs. Altogether, these results unveil the function of PV interneurons surrounding PNNs in protecting recent and remote contextual memory through the regulation of PV neuron GABA release.
Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons.
神经元周围网通过限制来自小白蛋白中间神经元的活动依赖性抑制来保护长期记忆
阅读:8
作者:Shi Wei, Wei Xiangbo, Wang Xiaofei, Du Shuwen, Liu Weixuan, Song Jian, Wang Yun
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2019 | 起止号: | 2019 Dec 26; 116(52):27063-27073 |
| doi: | 10.1073/pnas.1902680116 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
