Cell signaling facilitates apical constriction by basolaterally recruiting Arp2/3 via Rac and WAVE.

细胞信号通过 Rac 和 WAVE 从基底外侧募集 Arp2/3 来促进顶端收缩

阅读:7
作者:Zhang Pu, Medwig-Kinney Taylor N, Breiner Eleanor A, Perez Jadyn M, Song April N, Goldstein Bob
Apical constriction is a critical cell shape change that bends tissues. How precisely-localized actomyosin regulators drive apical constriction remains poorly understood. C. elegans gastrulation provides a valuable model to address this question. The Arp2/3 complex is essential in C. elegans gastrulation. To understand how Arp2/3 is locally regulated, we imaged embryos with endogenously-tagged Arp2/3 and its nucleation-promoting factors (NPFs). The three NPFs - WAVE, WASP, and WASH - colocalized with Arp2/3 and controlled Arp2/3 localization at distinct subcellular locations. We exploited this finding to study distinct populations of Arp2/3 and found that only WAVE depletion caused penetrant gastrulation defects. WAVE localized basolaterally with Arp2/3 at cell-cell contacts, dependent on CED-10/Rac. Establishing ectopic cell contacts recruited WAVE and Arp2/3, identifying contact as a symmetry-breaking cue for localization of these proteins. These results suggest that cell-cell signaling via Rac activates WAVE and Arp2/3 basolaterally, and that basolateral Arp2/3 is important for apical constriction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。