SIRT2 promotes cell proliferation and migration through mediating ERK1/2 activation and lactosylceramide accumulation in prostate cancer

SIRT2 通过介导 ERK1/2 激活和乳糖神经酰胺在前列腺癌中的积累促进细胞增殖和迁移

阅读:5
作者:Rui Lin, Yiping Yang, Eran Wu, Menghan Zhou, Shan Wang, Qingyun Zhang

Background

Prostate cancer (PCa) is an age-related malignancy with a high incidence and mortality rate due to lack of efficacy drugs for its therapy in late castration-resistant stage. Sirtuin 2 (SIRT2), a NAD+ -dependent protein deacetylase, is associated with age-related diseases. However, SIRT2 roles in PCa are unclear yet.

Conclusions

Our data suggested that SIRT2 is overexpressed in CRPC and NEPC and could promote cell growth and migration through activating ERK1/2 pathway and inducing lactosylceramide production, indicating that SIRT2 has the potential to be a new target for the treatment of PCa.

Methods

Data of SIRT2 expression were extracted from TCGA cohort and GSE54460 cohort. Realtime quantitative PCR and immunohistochemistry were employed to analyze the expression of SIRT2 in PCa tissues. Cell counting Kit-8 assay, lentiviral transduction, flow cytometry, transwell experiments, western blot and metabolomic analysis were performed to explore the functions of SIRT2.

Results

SIRT2 exhibited increased expression in castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC). Overexpression of SIRT2 promoted cell proliferation, the proportion of S phase, migration and invasion, and reduced apoptosis rate. The increased phosphorylated ERK1/2 indicated the regulation of SIRT2 to cell proliferation, migration and invasion through activation of ERK1/2 pathway. Furthermore, SIRT2 affected cell metabolic profile and induces lactosylceramide production through upregulation of B4GALT5, which further contributes cell migration and invasion. Conclusions: Our data suggested that SIRT2 is overexpressed in CRPC and NEPC and could promote cell growth and migration through activating ERK1/2 pathway and inducing lactosylceramide production, indicating that SIRT2 has the potential to be a new target for the treatment of PCa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。