The intracellular fate of internalized virus-receptor complexes is suspected of influencing the efficiency of virus infection. However, direct evidence of a link between infection and the fate of internalized virus has been difficult to obtain. To directly address this question, we generated human 293 cell lines stably expressing comparable cell surface levels of three different members of the somatostatin receptor family (SSTR) which have natural differences in intracellular trafficking. Utilizing a glycoprotein that recognizes SSTR, we found that distinctive receptor subtype-specific destinations correlated with observable differences in the level of infection. Infection via SSTR-2 and -3 is restricted at a point after receptor binding and endocytosis but prior to penetration into the host cytoplasm. In contrast, entry via SSTR-5 featured a slower internalization with greater dependence on cholesterol. Quantitative real-time PCR showed that virus bound to SSTR-5 was directed to an intracellular environment that allowed near-wild-type (WT) levels of penetration, possibly due to a more favorable complement of host cell proteases, whereas SSTR-2 and -3 directed virions to a degradative compartment in which cytosol penetration was less efficient. Taken together, the results support that the superior receptor capacity of SSTR-5 results from its internalization into a cellular compartment that is more favorable to the cytoplasmic penetration of viral cores and reverse transcription. They suggest that the intracellular destination of internalized complexes is an important characteristic of a virus receptor and may have exerted a selective pressure on the choice of an entry receptor during evolution of viral glycoproteins.
Characteristics of the cellular receptor influence the intracellular fate and efficiency of virus infection.
细胞受体的特性会影响病毒在细胞内的命运和感染效率
阅读:4
作者:Krueger Robin L, Albritton Lorraine M
| 期刊: | Journal of Virology | 影响因子: | 3.800 |
| 时间: | 2013 | 起止号: | 2013 May;87(10):5916-25 |
| doi: | 10.1128/JVI.00398-13 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
