Precursor regulation has been an effective strategy to improve carotenoid production and the availability of novel precursor synthases facilitates engineering improvements. In this work, the putative geranylgeranyl pyrophosphate synthase encoding gene (AlGGPPS) and isopentenyl pyrophosphate isomerase encoding gene (AlIDI) from Aurantiochytrium limacinum MYA-1381 were isolated. We applied the excavated AlGGPPS and AlIDI to the de novo β-carotene biosynthetic pathway in Escherichia coli for functional identification and engineering application. Results showed that the two novel genes both functioned in the synthesis of β-carotene. Furthermore, AlGGPPS and AlIDI performed better than the original or endogenous one, with 39.7% and 80.9% increases in β-carotene production, respectively. Due to the coordinated expression of the 2 functional genes, β-carotene content of the modified carotenoid-producing E. coli accumulated a 2.99-fold yield of the initial EBIY strain in 12 h, reaching 10.99 mg/L in flask culture. This study helped to broaden current understanding of the carotenoid biosynthetic pathway in Aurantiochytrium and provided novel functional elements for carotenoid engineering improvements.
Identification and Functional Analysis of Two Novel Genes-Geranylgeranyl Pyrophosphate Synthase Gene (AlGGPPS) and Isopentenyl Pyrophosphate Isomerase Gene (AlIDI)-from Aurantiochytrium limacinum Significantly Enhance De Novo β-Carotene Biosynthesis in Escherichia coli.
从金藻中鉴定和功能分析两个新基因——香叶基香叶基焦磷酸合成酶基因(AlGGPPS)和异戊烯基焦磷酸异构酶基因(AlIDI)——显著增强大肠杆菌中β-胡萝卜素的从头合成
阅读:5
作者:Shi Shitao, Chang Yi, Yu Jinhui, Chen Hui, Wang Qiang, Bi Yuping
| 期刊: | Marine Drugs | 影响因子: | 5.400 |
| 时间: | 2023 | 起止号: | 2023 Apr 17; 21(4):249 |
| doi: | 10.3390/md21040249 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
