Cyanobacterial photosystem I (PSI) can undergo modifications that adjust photosynthetic electron transport in response to fluctuations in environmental and cellular conditions. We recently reported that PSI isolated from Synechocystis sp. PCC 6803 (S. 6803) strains lacking a peripheral oxygen reduction reaction (ORR1) pathway demonstrated altered P(700) photooxidation capacity, changes in spectral properties, and a higher proportion of monomers. These changes in PSI were augmented when cells were grown under higher photon flux, which creates a greater energy imbalance at PSI. We have shown that the modified PSI is functional in photochemical charge separation and ferredoxin reduction reactions. Thus, we hypothesized that monomerization of PSI was caused by changes in the environment of PsaL, which is known to be essential for stabilizing trimers. To test our hypothesis, we isolated PSI monomers and trimers from ORR1 and wild-type (WT) strains. The electron paramagnetic resonance (EPR) spectra of reduced PSI demonstrated the presence of intact F(A) and F(B) [4Fe-4S] clusters, consistent with measurements of functional charge separation and electron transport. Limited proteolysis followed by mass spectrometric analysis showed altered accessibility of PsaL in the ORRI PSI monomers compared to WT monomers, and included regions associated with chlorophyll and carotenoid binding, and in functional interactions with adjacent subunits. In addition, ORR1 PSI monomers had spectral changes compared to WT PSI due to differences in carotenoid compositions. Collectively, these findings reveal new insights into how microbes adjust PSI structure and photochemistry to mitigate photodamage in response to changes in electron utilization by downstream chemical reactions.
Modulation of cyanobacterial Photosystem I protein environment and spectral capacity in response to changes in electron flow pathways and photon flux.
蓝藻光系统 I 蛋白环境和光谱能力随电子流路径和光子通量的变化而调节
阅读:11
作者:Smolinski Sharon L, Tokmina-Lukaszewska Monika, Holland Junia M, Guo Zhanjun, Kisgeropoulos Effie, Bothner Brian, King Paul W, Lubner Carolyn E
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul;301(7):110233 |
| doi: | 10.1016/j.jbc.2025.110233 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
