Chronic P7C3 treatment restores hippocampal neurogenesis in the Ts65Dn mouse model of Down Syndrome [Corrected].

慢性 P7C3 治疗可恢复唐氏综合征 Ts65Dn 小鼠模型的海马神经发生 [已更正]

阅读:6
作者:Latchney Sarah E, Jaramillo Thomas C, Rivera Phillip D, Eisch Amelia J, Powell Craig M
Down syndrome (DS) is the most common genetic cause of intellectual disability and developmental delay. In addition to cognitive dysfunction, DS patients are marked by diminished neurogenesis, a neuropathological feature also found in the Ts65Dn mouse model of DS. Interestingly, manipulations that enhance neurogenesis - like environmental enrichment or pharmacological agents - improve cognition in Ts65Dn mice. P7C3 is a proneurogenic compound that enhances hippocampal neurogenesis, cell survival, and promotes cognition in aged animals. However, this compound has not been tested in the Ts65Dn mouse model of DS. We hypothesized that P7C3 treatment would reverse or ameliorate the neurogenic deficits in Ts65Dn mice. To test this, adult Ts65Dn and age-matched wild-type (WT) mice were administered vehicle or P7C3 twice daily for 3 months. After 3 months, brains were examined for indices of neurogenesis, including quantification of Ki67, DCX, activated caspase-3 (AC3), and surviving BrdU-immunoreactive(+) cells in the granule cell layer (GCL) of the hippocampal dentate gyrus. P7C3 had no effect on total Ki67+, DCX+, AC3+, or surviving BrdU+ cells in WT mice relative to vehicle. GCL volume was also not changed. In keeping with our hypothesis, however, P7C3-treated Ts65Dn mice had a significant increase in total Ki67+, DCX+, and surviving BrdU+ cells relative to vehicle. P7C3 treatment also decreased AC3+ cell number but had no effect on total GCL volume in Ts65Dn mice. Our findings show 3 months of P7C3 is sufficient to restore the neurogenic deficits observed in the Ts65Dn mouse model of DS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。