Molecular NMR T2 values can predict cartilage stress-relaxation parameters.

分子核磁共振T2值可以预测软骨应力松弛参数

阅读:7
作者:June Ronald K, Fyhrie David P
Articular cartilage lines synovial joints and functions as a low-friction deformable tissue to enable smooth and stable joint articulation. The objective of this study was to determine the relationships between cartilage stress-relaxation properties and the collagen and GAG NMR transverse relaxation times (T(2)) toward understanding mechanisms of cartilage viscoelasticity. Stress-relaxation tests were performed on both cultured and enzymatically digested bovine cartilage, followed by measurements of both the collagen and GAG T(2) using the Call-Purcell-Meiboom-Gill pulse sequence. The peak and equilibrium stresses were correlated with the GAG T(2), and the stress-relaxation time constant was correlated with the collagen T(2). Multiple linear regression models were successful in using the specific T(2) values to predict the stress-relaxation properties. As a model of osteoarthritis, enzymatic digestion with collagenase and testicular hyaluronidase had weak effects on T(2) values. These data present a complex picture of cartilage mechanical behavior, with cartilage stiffness associated with the GAG T(2) values and the stress-relaxation time constant associated with the collagen T(2).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。