The tumor microenvironment consists of stromal cells and extracellular factors that evolve in parallel with carcinoma cells. To gain insights into the activities of stromal cell populations, we developed and applied multicolor imaging techniques to analyze the behavior of these cells within different tumor microenvironments in the same live mouse. We found that regulatory T-lymphocytes (Tregs) migrated in proximity to blood vessels. Dendritic-like cells, myeloid cells and carcinoma-associated fibroblasts all exhibited higher motility in the microenvironment at the tumor periphery than within the tumor mass. Since oxygen levels differ between tumor microenvironments, we tested if acute hypoxia could account for the differences in cell migration. Direct visualization revealed that Tregs ceased migration under acute systemic hypoxia, whereas myeloid cells continued migrating. In the same mouse and microenvironment, we experimentally subdivided the myeloid cell population and revealed that uptake of fluorescent dextran defined a low-motility subpopulation expressing markers of tumor-promoting, alternatively activated macrophages. In contrast, fluorescent anti-Gr1 antibodies marked myeloid cells patrolling inside tumor vessels and in the stroma. Our techniques allow real-time combinatorial analysis of cell populations based on spatial location, gene expression, behavior and cell surface molecules within intact tumors. The techniques are not limited to investigations in cancer, but could give new insights into cell behavior more broadly in development and disease.
Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy.
利用旋转盘共聚焦显微镜观察不同肿瘤微环境中基质细胞的动态变化
阅读:3
作者:Egeblad Mikala, Ewald Andrew J, Askautrud Hanne A, Truitt Morgan L, Welm Bryan E, Bainbridge Emma, Peeters George, Krummel Matthew F, Werb Zena
| 期刊: | Disease Models & Mechanisms | 影响因子: | 3.300 |
| 时间: | 2008 | 起止号: | 2008 Sep-Oct;1(2-3):155-67; discussion 165 |
| doi: | 10.1242/dmm.000596 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
