The gustatory system allows us to perceive and distinguish sweetness from water. We studied this phenomenon by recording neural activity in rats' anterior insular (aIC) and orbitofrontal (OFC) cortices while they categorized varying sucrose concentrations against water. Neurons in both aIC and OFC encoded the categorical distinction between sucrose and water rather than specific sucrose concentrations. Notably, aIC encoded this distinction faster than OFC. Conversely, the OFC slightly preceded the aIC in representing choice information, although both cortices encoded the rat's choices in parallel. Further analyses revealed dynamic and sequential encoding of sensory and categorical decisions, forming brief sequences of encoding neurons throughout the trial rather than long-lasting neuronal representations. Our findings, supported by single-cell, population decoding, and principal-component analysis (PCA), demonstrate that gustatory cortices employ neuronal sequences to compute sensorimotor transformations, from taste detection to categorical decisions, and continuously update this process as new taste information emerges using dynamic coding.
Neuronal Sequences and dynamic coding of water-sucrose categorization in rat gustatory cortices.
大鼠味觉皮层中水-蔗糖分类的神经元序列和动态编码
阅读:11
作者:Mendoza Germán, Fonseca Esmeralda, Merchant Hugo, Gutierrez Ranier
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2024 Oct 30; 27(12):111287 |
| doi: | 10.1016/j.isci.2024.111287 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
