Pharmacological manipulations in the Drosophila embryo have been hindered by the impermeability of the eggshell. The ultimate barrier to delivery of small molecule solutes to the embryo is the waxy layer that lies beneath the external chorion layers and encases the underlying vitelline membrane of the eggshell. Conventional protocols call for heptane or octane to permeablize the dechorionated eggshell however, these solvents are toxic and can result in low viability. Furthermore, heptane and octane require transition of the embryo between aqueous and organic phase solvents making it challenging to avoid desiccation. Here we describe an embryo permeabilization solvent (EPS) composed of d-limonene and plant-derived surfactants that is water miscible and highly effective in rendering the dechorionated eggshell permeable. EPS permeabilization enables embryo uptake of several different dyes of various molecular mass up to 995Da. We find that the embryo undergoes an age-dependent decrease in the ability to be permeabilized in the first six to eight hours after egg laying. This apparent developmental change in the vitelline membrane contributes to the heterogeneity in permeabilization seen even among closely staged embryos. However, using fluorescent properties of Rhodamine B dye and various conditions of EPS treatment we demonstrate the ability to obtain optimally permeabilized viable embryos. We also demonstrate the ability to assess teratogenic activity of several compounds applied to embryos in vitro, using both early and late developmental endpoints. Application of the method to transgenic strains carrying GFP-reporter genes results in a robust readout of pharmacological alteration of embryogenesis. The straightforward and rapid nature of the manipulations needed to prepare batches of permeabilized embryos has the potential of establishing the Drosophila embryo as an alternative model in toxicology and for small molecule screening in a high-throughput format.
Permeabilization of Drosophila embryos for introduction of small molecules.
果蝇胚胎透化处理以导入小分子
阅读:6
作者:Rand Matthew D, Kearney Alison L, Dao Julie, Clason Todd
| 期刊: | Insect Biochemistry and Molecular Biology | 影响因子: | 3.700 |
| 时间: | 2010 | 起止号: | 2010 Nov;40(11):792-804 |
| doi: | 10.1016/j.ibmb.2010.07.007 | 种属: | Drosophila |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
